Effects of Chitosan and Cellulose Derivatives on Sodium Carboxymethyl Cellulose-Based Films: A Study of Rheological Properties of Film-Forming Solutions

Author:

Zhang Huatong1,Su Shunjie1,Liu Shuxia2,Qiao Congde1,Wang Enhua1,Chen Hua3,Zhang Cangheng1,Yang Xiaodeng1,Li Tianduo1ORCID

Affiliation:

1. Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Shandong Provincial Technology Center of Jining Zhongyin Electrochemical Co., Ltd., Jining 272500, China

3. Interventional Department of Shandong Provincial Cancer Hospital Affiliated to Shandong First Medical University, Jinan 250117, China

Abstract

Bio-based packaging materials and efficient drug delivery systems have garnered attention in recent years. Among the soluble cellulose derivatives, carboxymethyl cellulose (CMC) stands out as a promising candidate due to its biocompatibility, biodegradability, and wide resources. However, CMC-based films have limited mechanical properties, which hinders their widespread application. This paper aims to address this issue by exploring the molecular interactions between CMC and various additives with different molecular structures, using the rheological method. The additives include O-carboxymethylated chitosan (O-CMCh), N-2-hydroxypropyl-3-trimethylammonium-O-carboxymethyl chitosan (HTCMCh), hydroxypropyltrimethyl ammonium chloride chitosan (HACC), cellulose nanocrystals (CNC), and cellulose nanofibers (CNF). By investigating the rheological properties of film-forming solutions, we aimed to elucidate the influencing mechanisms of the additives on CMC-based films at the molecular level. Various factors affecting rheological properties, such as molecular structure, additive concentration, and temperature, were examined. The results revealed that the interactions between CMC and the additives were dependent on the charge of the additives. Electrostatic interactions were observed for HACC and HTCMCh, while O-CMCh, CNC, and CNF primarily interacted through hydrogen bonds. Based on these rheological properties, several systems were selected to prepare the films, which exhibited excellent transparency, wettability, mechanical properties, biodegradability, and absence of cytotoxicity. The desirable characteristics of these selected films demonstrated the strong biocompatibility between CMC and chitosan and cellulose derivatives. This study offers insights into the preparation of CMC-based food packaging materials with specific properties.

Funder

Qilu University of Technology and Shandong Academy of Sciences

National Natural Science Foundation of China

State Key Laboratory of Biobased Material and Green Papermaking

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3