Abstract
One of the ways to efficiently deliver various drugs, including therapeutic nucleic acids, into the cells is conjugating them with different transport ligands via labile or stable bonds. A convenient solid-phase approach for the synthesis of 5′-conjugates of oligonucleotides with biodegradable pH-sensitive hydrazone covalent bonds is proposed in this article. The approach relies on introducing a hydrazide of the ligand under aqueous/organic media to a fully protected support-bound oligonucleotide containing aldehyde function at the 5′-end. We demonstrated the proof-of-principle of this approach by synthesizing 5′-lipophilic (e.g., cholesterol and α-tocopherol) conjugates of modified siRNA and non-coding RNAs imported into mitochondria (antireplicative RNAs and guide RNAs for Mito-CRISPR/system). The developed method has the potential to be extended for the synthesis of pH-sensitive conjugates of oligonucleotides of different types (ribo-, deoxyribo-, 2′-O-methylribo-, and others) with ligands of different nature.
Funder
Russian Science Foundation
Russian Foundation for Fundamental Investigations
Russian State-funded budget project
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献