A Comparative Study of Molybdenum Carbonyl and Oxomolybdenum Derivatives Bearing 1,2,3-Triazole or 1,2,4-Triazoles in Catalytic Olefin Epoxidation

Author:

Nogueira Lucie S.,Neves Patrícia,Gomes Ana C.,Amarante Tatiana A.,Paz Filipe A. Almeida,Valente Anabela A.,Gonçalves Isabel S.,Pillinger MartynORCID

Abstract

The molybdenum(0)-carbonyl-triazole complexes [Mo(CO)3(L)3] [L = 1,2,3-triazole (1,2,3-trz) or 1,2,4-triazole (1,2,4-trz)] have been prepared and examined as precursors to molybdenum(VI) oxide catalysts for the epoxidation of cis-cyclooctene. Reaction of the carbonyl complexes with the oxidant tert-butyl hydroperoxide (TBHP) (either separately or in situ) gives oxomolybdenum(VI) hybrid materials that are proposed to possess one-dimensional polymeric structures in which adjacent oxo-bridged dioxomolybdenum(VI) moieties are further linked by bidentate bridging triazole (trz) ligands. A pronounced ligand influence on catalytic performance was found and the best result (quantitative epoxide yield within 1 h at 70 °C) was obtained with the 1,2,3-triazole oxomolybdenum(VI) hybrid. Both molybdenum oxide-triazole compounds displayed superior catalytic performance in comparison with the known hybrid materials [MoO3(trz)0.5], which have different structures based on organic-inorganic perovskite-like layers. With aqueous H2O2 as the oxidant instead of TBHP, all compounds were completely soluble and active. A pronounced ligand influence on catalytic performance was only found for the hybrids [MoO3(trz)0.5], and only the 1,2,4-trz compound displayed reaction-induced self-precipitation behavior. An insight into the type of solution species that may be involved in the catalytic processes with these compounds was obtained by separately treating [MoO3(1,2,4-trz)0.5] with excess H2O2, which led to the crystallization of the complex (NH4)1.8(H3O)0.2[Mo2O2(μ2-O)(O2)4(1,2,4-trz)]·H2O. The single-crystal X-ray investigation of this complex reveals an oxo-bridged dinuclear structure with oxodiperoxo groups being further linked by a single triazole bridge.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3