The Millennia-Long Development of Drugs Associated with the 80-Year-Old Artificial Intelligence Story: The Therapeutic Big Bang?

Author:

Crouzet Aurore12,Lopez Nicolas234,Riss Yaw Benjamin1,Lepelletier Yves256ORCID,Demange Luc1

Affiliation:

1. UMR 8038 CNRS CiTCoM, Team PNAS, Faculté de Pharmacie, Université Paris Cité, 4 Avenue de l’Observatoire, 75006 Paris, France

2. W-MedPhys, 128 Rue la Boétie, 75008 Paris, France

3. ENOES, 62 Rue de Miromesnil, 75008 Paris, France

4. Unité Mixte de Recherche «Institut de Physique Théorique (IPhT)» CEA-CNRS, UMR 3681, Bat 774, Route de l’Orme des Merisiers, 91191 St Aubin-Gif-sur-Yvette, France

5. Université Paris Cité, Imagine Institute, 24 Boulevard Montparnasse, 75015 Paris, France

6. INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 Boulevard Montparnasse, 75015 Paris, France

Abstract

The journey of drug discovery (DD) has evolved from ancient practices to modern technology-driven approaches, with Artificial Intelligence (AI) emerging as a pivotal force in streamlining and accelerating the process. Despite the vital importance of DD, it faces challenges such as high costs and lengthy timelines. This review examines the historical progression and current market of DD alongside the development and integration of AI technologies. We analyse the challenges encountered in applying AI to DD, focusing on drug design and protein–protein interactions. The discussion is enriched by presenting models that put forward the application of AI in DD. Three case studies are highlighted to demonstrate the successful application of AI in DD, including the discovery of a novel class of antibiotics and a small-molecule inhibitor that has progressed to phase II clinical trials. These cases underscore the potential of AI to identify new drug candidates and optimise the development process. The convergence of DD and AI embodies a transformative shift in the field, offering a path to overcome traditional obstacles. By leveraging AI, the future of DD promises enhanced efficiency and novel breakthroughs, heralding a new era of medical innovation even though there is still a long way to go.

Funder

French National Research Agency

Publisher

MDPI AG

Reference207 articles.

1. Krantz, A. (1998). Protein-site targeting: Diversification of the drug discovery process. Nat. Biotechnol., 16.

2. (2024, May 22). Google Trend on Keyword “Artificial Intelligence”. Available online: https://trends.google.fr/trends/explore?date=today%205-y&q=%2Fm%2F0mkz&hl=fr.

3. Generative AI and ChatGPT: Applications, challenges, and AI-human collaboration;Zheng;J. Inf. Technol. Case Appl. Res.,2023

4. AI for life: Trends in artificial intelligence for biotechnology;Holzinger;New Biotechnol.,2023

5. Biotechnology and Genetic Engineering using AI: A Review;Sreelakshmi;Int. J. Intell. Syst. Appl. Eng.,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3