Experimental and Modeling Study on Methane Hydrate Equilibrium Conditions in the Presence of Inorganic Salts

Author:

Fu Qiang12,Chen Mingqiang12,Pang Weixin12,Xu Zhen3ORCID,Liu Zengqi3ORCID,Wen Huiyun12,Lei Xin12

Affiliation:

1. State Key Laboratory of Offshore Natural Gas Hydrate, China National Offshore Oil Corporation, Beijing 100028, China

2. Research Institute of China National Offshore Oil Cooperation, China National Offshore Oil Corporation, Beijing 100028, China

3. State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China

Abstract

The aim of this study was to determine the influence of four inorganic salts, KCl, NaCl, KBr and NaBr, on the thermodynamic conditions of methane hydrate formation. In order to achieve this, the vapor–liquid water-hydrate (VLWH) equilibrium conditions of methane (CH4) hydrate were measured in the temperature range of 274.15 K–282.15 K by the isothermal pressure search method. The results demonstrated that, in comparison with deionized water, the four inorganic salts exhibited a significant thermodynamic inhibition on CH4 hydrate. Furthermore, the inhibitory effect of Na+ on methane hydrate is more pronounced than that of K+, where there is no discernible difference between Cl− and Br−. The dissociation enthalpy (∆Hdiss) of CH4 hydrate in the four inorganic salt solutions is comparable to that of deionized water, indicating that the inorganic salt does not participate in the formation of hydrate crystals. The Chen–Guo hydrate model and N–NRTL–NRF activity model were employed to forecast the equilibrium conditions of CH4 hydrate in electrolyte solution. The absolute relative deviation (AARD) between the predicted and experimental values were 1.24%, 1.08%, 1.18% and 1.21%, respectively. The model demonstrated satisfactory universality and accuracy. This study presents a novel approach to elucidating the mechanism and model prediction of inorganic salt inhibition of hydrate.

Funder

Research on Cross-scale Phase Transition Characteristics and Numerical Simulation Methods for Depressurization development of natural gas hydrates

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3