Development of Glycyrrhetinic Acid and Folate Modified Cantharidin Loaded Solid Lipid Nanoparticles for Targeting Hepatocellular Carcinoma

Author:

Xu Yilin,Wang Min,Ning Shuangcheng,Yang Zhonglan,Zhou Lili,Xia Xinhua

Abstract

Cantharidin (CTD) is the major component of anticancer drugs obtained from Mylabris Cichorii and has a good inhibitory effect on several cancers, including hepatocellular carcinoma (HCC) and breast cancer. However, due to its toxicity, oral administration can cause various adverse reactions, limiting its clinical application. The aim of this work was to design glycyrrhetinic acid (GA)- and/or folate (FA)-modified solid lipid nanoparticles (SLNs) for the encapsulation of CTD to target HCC. Four CTD-loaded SLNs (cantharidin solid lipid nanoparticles (CSLNs), glycyrrhetinic acid-modified cantharidin solid lipid nanoparticles (GA-CSLNs), folate-modified cantharidin solid lipid nanoparticles (FA-CSLNs), and glycyrrhetinic acid and folate-modified cantharidin solid lipid nanoparticles (GA-FA-CSLNs)) were prepared by the emulsion ultrasonic dispersion method, and their physicochemical parameters were determined (particle size and distribution, morphology, zeta-potential, entrapment efficiency, drug loading, and hemolysis). Additionally, the antitumor activities of the four SLNs were evaluated comprehensively by tests for cytotoxicity, cell migration, cell cycle, apoptosis, cellular uptake, competition suppression assay, and in vivo tumor suppression assay. Four SLNs showed spherical shapes and mean diameters in the range of 75–110 nm with size dispersion (PDI) within the range of 0.19–0.50 and zeta-potential approximately –10 mV. The entrapment efficiency of CTD in SLNs was higher than 95% for all tested formulations, and no hemolysis was observed. Compared to GA-CSLNs or CSLNs, GA-FA-CSLNs and FA-CSLNs showed stronger cytotoxicity on hepatocellular carcinoma cells (HepG2), and the cytotoxicity of GA-FA-CSLNs on hepatocyte cells (L-02) was remarkably reduced compared with other formulations. GA-FA-CSLNs and FA-CSLNs also increased the inhibition of HepG2 cell migration, and FA-CSLNs had the highest apoptosis rate. The cell cycle results indicated that HepG2 cells were arrested mainly in the S phase and G2/M phase. Analysis of competition inhibition experiments showed that GA and FA ligands had targeted effects on HepG2 cells. The in vivo tumor inhibition experiment showed that GA-FA-CSLNs and FA-CSLNs had excellent tumor inhibition ability—their tumor inhibition rates were 96.46% and 89.92%, respectively. Our results indicate that GA-FA-CSLNs and FA-CSLNs have a promising future in the therapeutic intervention of HCC.

Funder

the science and technology innovation Program of Hunan Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3