Bifacial Dye-Sensitized Solar Cells Utilizing Visible and NIR Dyes: Implications of Dye Adsorption Behaviour

Author:

Shaban Suraya1ORCID,Vats Ajendra K.1,Pandey Shyam S.1ORCID

Affiliation:

1. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4, Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan

Abstract

Bifacial dye-sensitized solar cells (DSSCs) were fabricated utilizing dye cocktails of two dyes, Z-907 and SQ-140, which have complementary light absorption and photon harvesting in the visible and near-infrared wavelength regions, for panchromatic photon harvesting. The investigation of the rate of dye adsorption and the binding strengths of the dyes on mesoporous TiO2 corroborated the finding that the Z-907 dye showed a rate of dye adsorption that was about >15 times slower and a binding that was about 3 times stronger on mesoporous TiO2 as compared to SQ-140. Utilizing the dye cocktails Z-907 and SQ-140 from ethanol, the formation of the dye bilayer, which was significantly influenced by the ratio of dyes and adsorption time, was demonstrated. It was demonstrated that the dyes of Z-907 and SQ-140 prepared in 1:9 or 9:1 molar ratios favoured the dye bilayer formation by subtly controlling the adsorption time. In contrast, the 1:1 ratio counterpart was prone to form mixed dye adsorption; the best performance of the BF-DSSCs was shown when a dye cocktail of Z-907 and SQ-140 in a molar 9:1 ratio was used to prepare a photoanode for 1 h of dye adsorption. The BF-DSSCs thus exhibited PCEs of 4.23% and 3.48% upon the front and rear side light illuminations, a cumulated PCE of 7.71%, and a very good BBF of 83%.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3