Microplastics’ Shape and Morphology Analysis in the Presence of Natural Organic Matter Using Flow Imaging Microscopy

Author:

Kim Soyoun1,Hyeon Yejin1,Park Chanhyuk1ORCID

Affiliation:

1. Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea

Abstract

Ubiquitous microplastics in urban waters have raised substantial public concern due to their high chemical persistence, accumulative effects, and potential adverse effects on human health. Reliable and standardized methods are urgently needed for the identification and quantification of these emerging environmental pollutants in wastewater treatment plants (WWTPs). In this study, we introduce an innovative rapid approach that employs flow imaging microscopy (FlowCam) to simultaneously identify and quantify microplastics by capturing high-resolution digital images. Real-time image acquisition is followed by semi-automated classification using customized libraries for distinct polyethylene (PE) and polystyrene (PS) microplastics. Subsequently, these images are subjected to further analysis to extract precise morphological details of microplastics, providing insights into their behavior during transport and retention within WWTPs. Of particular significance, a systematic investigation was conducted to explore how the presence of natural organic matter (NOM) in WWTPs affects the accuracy of the FlowCam’s measurement outputs for microplastics. It was observed that varying concentrations of NOM induced a more curled shape in microplastics, indicating the necessity of employing pre-treatment procedures to ensure accurate microplastic identification when utilizing the FlowCam. These observations offer valuable new perspectives and potential solutions for designing appropriate treatment technologies for removing microplastics within WWTPs.

Funder

National Research Foundation of Korea

Collabo R&D between the Industry, Academy, and Research Institute

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3