Glucosamine Improves Non-Alcoholic Fatty Liver Disease Induced by High-Fat and High-Sugar Diet through Regulating Intestinal Barrier Function, Liver Inflammation, and Lipid Metabolism

Author:

Li Feng12,Zhang Zhengyan12,Bai Yan3,Che Qishi4,Cao Hua5,Guo Jiao2,Su Zhengquan1ORCID

Affiliation:

1. Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China

2. Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China

3. School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China

4. Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China

5. School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a liver disease syndrome. The prevalence of NAFLD has continued to increase globally, and NAFLD has become a worldwide public health problem. Glucosamine (GLC) is an amino monosaccharide derivative of glucose. GLC has been proven to not only be effective in anti-inflammation applications, but also to modulate the gut microbiota effectively. Therefore, in this study, the therapeutic effect of GLC in the NAFLD context and the mechanisms underlying these effects were explored. Specifically, an NAFLD model was established by feeding mice a high-fat and high-sugar diet (HFHSD), and the HFHSD-fed NAFLD mice were treated with GLC. First, we investigated the effect of treating NAFLD mice with GLC by analyzing serum- and liver-related indicator levels. We found that GLC attenuated insulin resistance and inflammation, increased antioxidant function, and attenuated serum and liver lipid metabolism in the mice. Then, we investigated the mechanism underlying liver lipid metabolism, inflammation, and intestinal barrier function in these mice. We found that GLC can improve liver lipid metabolism and relieve insulin resistance and oxidative stress levels. In addition, GLC treatment increased intestinal barrier function, reduced LPS translocation, and reduced liver inflammation by inhibiting the activation of the LPS/TLR4/NF-κB pathway, thereby effectively ameliorating liver lesions in NAFLD mice.

Funder

Science and Technology Program of Guangzhou, China

Guangdong Demonstration Base for Joint Cultivation of Postgraduates

Science Foundation for Distinguished Young Scholars of Guangdong, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3