Zeolite-Polymer Composite Materials as Water Scavenger

Author:

Tahraoui Zakaria,Nouali Habiba,Marichal Claire,Forler Patrice,Klein Julien,Daou T. JeanORCID

Abstract

The influence of the charge compensating cation nature (Na+, Mg2+) on the water adsorption properties of LTA-type zeolites used as filler in composite materials (zeolite/polymers) was investigated. Large scale cation exchanges were performed on zeolite powder at 80 °C for 2 h using 1 M magnesium chloride (MgCl2) aqueous solutions. XRF, ICP, and EDX analyses indicate a successful cationic exchange process without the modification of the zeolite structure as shown by XRD and solid-state NMR analyses. Composite materials (granulates and molded parts) were manufactured using to extrusion and injection processes. In the case of MgA zeolite, nitrogen adsorption–desorption experiments allowed us to measure a microporous volume, unlike NaA zeolite, which is non-porous to nitrogen probe molecule. SEM and EDX analyses highlighted the homogeneous distribution of zeolite crystals into the polymer matrix. Water adsorption capacities confirmed that the trends observed in the zeolite powder samples are preserved after dragging zeolites into composite formulations. Granulates and molded parts composite samples containing the magnesium exchanged zeolite showed an increase of their water adsorption capacity up to +27% in comparison to composite samples containing the non-exchanged zeolite. The MgA composite is more promising for water decontamination applications due to its higher water adsorption properties than the NaA composite.

Funder

Institut Universitaire de France

Association Nationale de la Recherche et de la Technologie

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3