Doxorubicin- and Trastuzumab-Modified Gold Nanoparticles as Potential Multimodal Agents for Targeted Therapy of HER2+ Cancers

Author:

Żelechowska-Matysiak Kinga1ORCID,Wawrowicz Kamil1ORCID,Wierzbicki Mateusz2ORCID,Budlewski Tadeusz3,Bilewicz Aleksander1ORCID,Majkowska-Pilip Agnieszka13ORCID

Affiliation:

1. Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland

2. Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland

3. Isotope Therapy Department, Central Clinical Hospital of the Ministry of Interior and Administration, 02-507 Warsaw, Poland

Abstract

Recently, targeted nanoparticles (NPs) have attracted much attention in cancer treatment due to their high potential as carriers for drug delivery. In this article, we present a novel bioconjugate (DOX–AuNPs–Tmab) consisting of gold nanoparticles (AuNPs, 30 nm) attached to chemotherapeutic agent doxorubicin (DOX) and a monoclonal antibody, trastuzumab (Tmab), which exhibited specific binding to HER2 receptors. The size and shape of synthesized AuNPs, as well as their surface modification, were analyzed by the TEM (transmission electron microscopy) and DLS (dynamic light scattering) methods. Biological studies were performed on the SKOV-3 cell line (HER2+) and showed high specificity of binding to the receptors and internalization capabilities, whereas MDA-MB-231 cells (HER2−) did not. Cytotoxicity experiments revealed a decrease in the metabolic activity of cancer cells and surface area reduction of spheroids treated with DOX–AuNPs–Tmab. The bioconjugate induced mainly cell cycle G2/M-phase arrest and late apoptosis. Our results suggest that DOX–AuNPs–Tmab has great potential for targeted therapy of HER2-positive tumors.

Funder

National Science Centre

European Social Fund

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference41 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3