Comparison of Antioxidant Capacity and Network Pharmacology of Phloretin and Phlorizin against Neuroinflammation in Traumatic Brain Injury

Author:

Ongay Kubra Kizil,Granato DanielORCID,Barreto George E.

Abstract

Neuroinflammation is a hallmark of traumatic brain injury (TBI)’s acute and chronic phases. Despite the medical and scientific advances in recent years, there is still no effective treatment that mitigates the oxidative and inflammatory damage that affects neurons and glial cells. Therefore, searching for compounds with a broader spectrum of action that can regulate various inflammatory signaling pathways is of clinical interest. In this study, we determined not only the in vitro antioxidant capacity of apple pomace phenolics, namely, phlorizin and its metabolite, phloretin, but we also hypothesize that the use of these bioactive molecules may have potential use in TBI. We explored the antioxidant effects of both compounds in vitro (DPPH, iron-reducing capacity (IRC), and Folin–Ciocalteu reducing capacity (FCRC)), and using network pharmacology, we investigated the proteins involved in their protective effects in TBI. Our results showed that the antioxidant properties of phloretin were superior to those of phlorizin in the DPPH (12.95 vs. 3.52 mg ascorbic acid equivalent (AAE)/L), FCRC (86.73 vs. 73.69 mg gallic acid equivalent (GAE)/L), and iron-reducing capacity (1.15 vs. 0.88 mg GAE/L) assays. Next, we examined the molecular signature of both compounds and found 11 proteins in common to be regulated by them and involved in TBI. Meta-analysis and GO functional enrichment demonstrated their implication in matrix metalloproteinases, p53 signaling, and cell secretion/transport. Using MCODE and Pearson’s correlation analysis, a subcluster was generated. We identified ESR1 (estrogen receptor alpha) as a critical cellular hub being regulated by both compounds and with potential therapeutic use in TBI. In conclusion, our study suggests that because of their vast antioxidant effects, probably acting on estrogen receptors, phloretin and phlorizin may be repurposed for TBI treatment due to their ease of obtaining and low cost.

Funder

Science Foundation Ireland under the Frontiers for the Future Programme

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3