Prediction of Phage Virion Proteins Using Machine Learning Methods

Author:

Barman Ranjan Kumar1ORCID,Chakrabarti Alok Kumar1,Dutta Shanta2

Affiliation:

1. Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T.Road Scheme XM, Beliaghata, Kolkata 700010, West Bengal, India

2. Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T.Road Scheme XM, Beliaghata, Kolkata 700010, West Bengal, India

Abstract

Antimicrobial resistance (AMR) is a major problem and an immediate alternative to antibiotics is the need of the hour. Research on the possible alternative products to tackle bacterial infections is ongoing worldwide. One of the most promising alternatives to antibiotics is the use of bacteriophages (phage) or phage-driven antibacterial drugs to cure bacterial infections caused by AMR bacteria. Phage-driven proteins, including holins, endolysins, and exopolysaccharides, have shown great potential in the development of antibacterial drugs. Likewise, phage virion proteins (PVPs) might also play an important role in the development of antibacterial drugs. Here, we have developed a machine learning-based prediction method to predict PVPs using phage protein sequences. We have employed well-known basic and ensemble machine learning methods with protein sequence composition features for the prediction of PVPs. We found that the gradient boosting classifier (GBC) method achieved the best accuracy of 80% on the training dataset and an accuracy of 83% on the independent dataset. The performance on the independent dataset is better than other existing methods. A user-friendly web server developed by us is freely available to all users for the prediction of PVPs from phage protein sequences. The web server might facilitate the large-scale prediction of PVPs and hypothesis-driven experimental study design.

Funder

Indian Council of Medical Research

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3