The Potential of High Voltage Discharges for Green Solvent Extraction of Bioactive Compounds and Aromas from Rosemary (Rosmarinus officinalis L.)—Computational Simulation and Experimental Methods

Author:

Nutrizio MarinelaORCID,Gajdoš Kljusurić JasenkaORCID,Marijanović Zvonimir,Dubrović IgorORCID,Viskić Marko,Mikolaj Elena,Chemat FaridORCID,Režek Jambrak AnetORCID

Abstract

Rosemary (Rosmarinus officinalis L.) is a Mediterranean medicinal and aromatic plant widely used due to valuable bioactive compounds (BACs) and aromas. The aim of the study was to evaluate the extraction of intracellular compounds from rosemary combining experimental procedure by means of high voltage electrical discharge (HVED), with a theoretical approach using two computational simulation methods: conductor-like screening model for real solvents and Hansen solubility parameters. The optimal HVED parameters were as follows: frequency 100 Hz, pulse width 400 ns, gap between electrodes 15 mm, liquid to solid ratio 50 mL/g, voltage 15 and 20 kV for argon, and 20 and 25 kV for nitrogen gas. Green solvents were used, water and ethanol (25% and 50%). The comparison was done with modified conventional extraction (CE) extracted by magnetic stirring and physicochemical analyses of obtained extracts were done. Results showed that HVED extracts in average 2.13-times higher total phenol content compared to CE. Furthermore, nitrogen, longer treatment time and higher voltage enhanced higher yields in HVED extraction. HVED was confirmed to have a high potential for extraction of BACs from rosemary. The computational stimulation methods were confirmed by experimental study, ethanol had higher potential of solubility of BACs and aromas from rosemary compared to water.

Funder

Hrvatska Zaklada za Znanost

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3