Chiral Covalent-Organic Framework MDI-β-CD-Modified COF@SiO2 Core–Shell Composite for HPLC Enantioseparation

Author:

Ran Xiaoyan,Guo Ping,Liu Caifang,Zhu Yulan,Liu Cheng,Wang Bangjin,Zhang Junhui,Xie Shengming,Yuan Liming

Abstract

The chiral covalent-organic framework (CCOF) is a new kind of chiral porous material, which has been broadly applied in many fields owing to its high porosity, regular pores, and structural adjustability. However, conventional CCOF particles have the characteristics of irregular morphology and inhomogeneous particle size distribution, which lead to difficulties in fabricating chromatographic columns and high column backpressure when the pure CCOFs particles are directly used as the HPLC stationary phases. Herein, we used an in situ growth strategy to prepare core–shell composite by immobilizing MDI-β-CD-modified COF on the surface of SiO2-NH2. The synthesized MDI-β-CD-modified COF@SiO2 was utilized as a novel chiral stationary phase (CSP) to explore its enantiomeric-separation performance in HPLC. The separation of racemates and positional isomers on MDI-β-CD-modified COF@SiO2-packed column (column A) utilizing n-hexane/isopropanol as the mobile phase was investigated. The results demonstrated that column A displayed remarkable separation ability for racemic compounds and positional isomers with good reproducibility and stability. By comparing the MDI-β-CD-modified COF@SiO2-packed column (column A) with commercial Chiralpak AD-H column and the previously reported β-CD-COF@SiO2-packed column (column B), the chiral recognition ability of column A can be complementary to that of Chiralpak AD-H column and column B. The relative standard deviations (RSDs) of the retention time and peak area for the separation of 1,2-bis(4-fluorophenyl)-2-hydroxyethanone were 0.28% and 0.79%, respectively. Hence, the synthesis of CCOFs@SiO2 core–shell composites as the CSPs for chromatographic separation has significant research potential and application prospects.

Funder

the National Natural Science Foundation of China

the Applied Basic Research Foundation of Yunnan Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3