Competitive Adsorptive Mechanism of H2/N2 in LTA/FAU Zeolites by Molecular Simulations and Experiments

Author:

Dong Zixu1ORCID,Wang Zhilu1,Zhang Lina1,Fu Qiang1ORCID,Wang Ming1

Affiliation:

1. School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China

Abstract

For industrial tail gas to be converted into high-purity hydrogen, the H2-N2 mixture needs to be separated efficiently. This work examined the adsorption characteristics and competitive mechanisms of H2 and N2 on LTA- and FAU-type zeolites, at 77 K, 298 K, and 0.1–10 bar by thoroughly analyzing results of adsorption capacity experiments and molecular simulations. In the Grand Canonical Monte Carlo (GCMC) simulations, the force field causing a molecular dipole of H2 and the polarization force field of N2 are first applied. The accuracy of the force field was experimentally verified. The findings indicate that N2 and H2 loading on Ca-FAU (Ca-LTA) are higher than Na-FAU (Na-LTA). On NaX at 77 K, the highest adsorption selectivity (N2/H2) is observed; on NaA at 298 K, it is the opposite. The GCMC data findings demonstrate that H2 and N2 have remarkably similar adsorption sites, with framework oxygen atoms and non-framework cations serving as the main adsorption sites for adsorbate molecules. Furthermore, the rate at which H2 diffuses is higher than that of N2. The study of redistribution charge before and after adsorption demonstrated that N2 has a greater affinity for the framework oxygen atoms than H2. This study provides a molecular theoretical foundation for the adsorption behavior of H2-N2 mixture in zeolites.

Funder

Natural Science Foundation of Shandong Province in China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3