The New Attempt at Modeling of the Three-Dimensional Geometry of the Epidermal Skin Layer and the Diffusion Processes of Nanomolecular Drug Carriers in Such Structures

Author:

Błaszczyk Mariola M.ORCID,Sęk Jerzy P.ORCID

Abstract

Nanoparticles are presently considered the efficient carriers of medicals, cosmetics, and pharmaceuticals in the human organism. There is a lot of research carried out on the delivery of these materials in a non-invasive way. Such a method is very safe in times of global illnesses and pandemics. The most frequently investigated route is the approach to delivering nano-media through the skin as the result of diffusion processes. The stratum corneum, the outermost layer of skin, is the most resistive barrier to such a form of penetration. In this work, a new model is proposed to predict nanoparticles’ transport through this layer. It introduces the concept of the three-dimensional model of the stratum corneum, which allows to define the skin surface area from which diffusion occurs. This structure was replaced by the single capillary, resulting from theoretical considerations. Modeling of the diffusion process of nanoparticles as the result of Brownian motion in such a capillary was performed numerically using COMSOL Multiphysics package programs. Further, using the dimensions of such a capillary, a new model of diffusion was developed in which the parameters allow to determine the effective diffusion coefficient as a function of nanoparticle size and the viscosity of a liquid. As a result, the proposed models provide a new and efficient approach to the determination of the nano-molecules’ transport phenomena through the skin layer.

Funder

NCN Sonata

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference25 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3