Synthesis and Evaluation of Artificial Nucleic Acid Bearing an Oxanorbornane Scaffold

Author:

Komine Hibiki,Mori Shohei,Morihiro KunihikoORCID,Ishida Kenta,Okuda TakumiORCID,Kasahara Yuuya,Aoyama HiroshiORCID,Yamaguchi TakaoORCID,Obika SatoshiORCID

Abstract

Natural oligonucleotides have many rotatable single bonds, and thus their structures are inherently flexible. Structural flexibility leads to an entropic loss when unwound oligonucleotides form a duplex with single-stranded DNA or RNA. An effective approach to reduce such entropic loss in the duplex-formation is the conformational restriction of the flexible phosphodiester linkage and/or sugar moiety. We here report the synthesis and biophysical properties of a novel artificial nucleic acid bearing an oxanorbornane scaffold (OxNorNA), where the adamant oxanorbornane was expected to rigidify the structures of both the linkage and sugar parts of nucleic acid. OxNorNA phosphoramidite with a uracil (U) nucleobase was successfully synthesized over 15 steps from a known sugar-derived cyclopentene. Thereafter, the given phosphoramidite was incorporated into the designed oligonucleotides. Thermal denaturation experiments revealed that oligonucleotides modified with the conformationally restricted OxNorNA-U properly form a duplex with the complementally DNA or RNA strands, although the Tm values of OxNorNA-U-modified oligonucleotides were lower than those of the corresponding natural oligonucleotides. As we had designed, entropic loss during the duplex-formation was reduced by the OxNorNA modification. Moreover, the OxNorNA-U-modified oligonucleotide was confirmed to have extremely high stability against 3′-exonuclease activity, and its stability was even higher than those of the phosphorothioate-modified counterparts (Sp and Rp). With the overall biophysical properties of OxNorNA-U, we expect that OxNorNA could be used for specialized applications, such as conformational fixation and/or bio-stability enhancement of therapeutic oligonucleotides (e.g., aptamers).

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3