Evolution of Oxygen Content of Graphene Oxide for Humidity Sensing

Author:

Zhang Xue1,Zhang Guocheng1,Wang FuKe2ORCID,Chi Hong1ORCID

Affiliation:

1. Engineering and Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

2. Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore

Abstract

Graphene oxide (GO) has shown significant potential in humidity sensing. It is well accepted that the oxygen-containing functional groups in GO significantly influence its humidity sensing performance. However, the relationship between the content of these groups and the humidity sensing capability of GO-based sensors remains unclear. In the present work, we investigate the role of oxygen-containing functional groups in the humidity sensing performance by oxidizing graphite with mesh numbers 80–120, 325, and 8000 using the Hummers method, resulting in GO-80, GO-325, and GO-8000. Infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) were used to identify the types and quantification of oxygen-containing functional groups. Molecular dynamics simulation is used to simulate the adsorption energy, intercalation dynamics, and hydrogen bonding of water molecules. Electrochemical tests were used to compare the adsorption/desorption time and response sensitivity of graphene oxide to humidity. It is proposed that hydroxyl and carboxyl groups are the main contributing groups to humidity sensing. GO-8000 shows a relatively fast response time, but the large number of carboxyl groups will hinder intercalation of water molecules, thus exhibiting lower sensitivity. This research provides a reference for the future development of graphene-based sensors, catalysts, and environmental materials.

Funder

Shandong Provincial Natural Science Foundation

Shandong Academy of Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3