Influence of Ca3(PO4)2 on the Surface Morphology and Properties of a CaO-Al2O3-SiO2-Fe2O3-Based High Temperature Phase Reconstructed Complex

Author:

Yang Huanyin12,Guo Hongli2,Sun Hongjuan13,Peng Tongjiang134

Affiliation:

1. Key Laboratory of Solid Waste Treatment and Resource Reuse, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China

2. College of Electronic and Information Engineering, Yangtsze Normal University, Chongqing 408100, China

3. Institute of Mineral Materials and Applications, Southwest University of Science and Technology, Mianyang 621010, China

4. Analysis and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China

Abstract

In this study, a glaze slurry was prepared with different contents of tricalcium phosphate. It was then applied to a fly ash microcrystalline ceramic billet and sintered at 1180 °C for 30 min to prepare the complex. The aim was to obtain a high value-added application of fly ash in order to reduce environmental pollution. The study systematically investigated the influence of the Ca3(PO4)2 content on the crystal phase evolution, physical-mechanical properties, and micro-morphology of the complex. The results showed that products sintered at 1180 °C with 8 wt% Ca3(PO4)2 demonstrated better performance, with a water absorption of 0.03% and a Vickers microhardness of 6.5 GPa. Additionally, the study observed a strong correlation between the Ca3(PO4)2 content and the opacity effect. A feasible opacity mechanism was also proposed to explain the variation of glaze colors and patterns with different contents of Ca3(PO4)2.

Funder

Science and Technology Project of Chongqing Municipal Commission of Education

New Generation Information Technology Innovation Project

Intellectual Property Special Project of the Sichuan Intellectual Property Office

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3