Identification and Characterization of a Novel N- and O-Glycosyltransferase from Saccharopolyspora erythraea

Author:

Gutacker Fabienne,Schmidt-Bohli Yvonne-Isolde,Strobel Tina,Qiu Danye,Jessen HenningORCID,Paululat Thomas,Bechthold AndreasORCID

Abstract

Glycosyltransferases are important enzymes which are often used as tools to generate novel natural products. In this study, we describe the identification and characterization of an inverting N- and O-glycosyltransferase from Saccharopolyspora erythraea NRRL2338. When feeding experiments with 1,4-diaminoanthraquinone in Saccharopolyspora erythraea were performed, the formation of new compounds (U3G and U3DG) was observed by HPLC-MS. Structure elucidation by NMR revealed that U3G consists of two compounds, N1-α-glucosyl-1,4-diaminoanthraquinone and N1-β-glucosyl-1,4-diaminoanthraquinone. Based on UV and MS data, U3DG is a N1,N4-diglucosyl-1,4-diaminoanthraquinone. In order to find the responsible glycosyltransferase, gene deletion experiments were performed and we identified the glycosyltransferase Sace_3599, which belongs to the CAZy family 1. When Streptomyces albus J1074, containing the dTDP-d-glucose synthase gene oleS and the plasmid pUWL-A-sace_3599, was used as host, U3 was converted to the same compounds. Protein production in Escherichia coli and purification of Sace_3599 was carried out. The enzyme showed glycosyl hydrolase activity and was able to produce mono- and di-N-glycosylated products in vitro. When UDP-α-d-glucose was used as a sugar donor, U3 was stereoselective converted to N1-β-glucosyl-1,4-diaminoanthraquinone and N1,N4-diglucosyl-1,4-diaminoanthraquinone. The use of 1,4-dihydroxyanthraquinone as a substrate in in vitro experiments also led to the formation of mono-glucosylated and di-glucosylated products, but in lower amounts. Overall, we identified and characterized a novel glycosyltransferase which shows glycohydrolase activity and the ability to glycosylate “drug like” structures forming N- and O-glycosidic bonds.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3