Cold-Sintered ZnO Ceramic Composites Co-Doped with Polytetrafluoroethylene and Oxides

Author:

Xiao Yongjian1,Yang Yang1,Kang Shenglin1,Li Yuchen1,Hou Xinyuan1,Ren Chengjun2,Wang Xilin3ORCID,Zhao Xuetong1ORCID

Affiliation:

1. State Key Laboratory of Power Transmission Equipment Technology, Chongqing University, Shapingba District, Chongqing 400044, China

2. Southwest Branch, State Grid Corporation of China, Chengdu 610041, China

3. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

Grain boundaries play a significant role in determining the performance of ceramic-based materials. The modulation of interfacial structures provides a promising approach to improve the physicochemical and electrical properties of ceramic materials. In this work, the grain boundary structures of ZnO-based ceramics were manipulated by incorporating polytetrafluoroethylene (PTFE) and metal oxides through the cold sintering process (CSP). It was found that the grain size of ZnO-based ceramics can be effectively reduced from 525.93 nm to 338.08 nm with an addition of PTFE and metal oxides of CoO and Mn2O3. Microstructural results show that most of the PTFE phase and metal oxides were distributed along the grain boundaries, which may lead to the increased grain boundary resistance from 1.59 × 106 ohm of pure ZnO to 6.21 × 1010 ohm of ZnO-based ceramics doped with PTFE and metal oxides, and enhanced Schottky barrier height from 0.32 eV to 0.59 eV. As a result, the breakdown field and nonlinear coefficient of the ZnO-based ceramics were improved to 3555.56 V/mm and 13.55, respectively. Therefore, this work indicates that CSP presents a feasible approach to design functional ceramic composites through the integration of polymer and metal oxides.

Funder

Fund of the National Natural Science Foundation of China

Science and Technology Projects of State Grid Co., Ltd. of China

Fok Ying-Tong Education Foundation, China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of composite rare earth doping on the flash sintered zinc oxide varistor ceramics;Journal of Materials Science: Materials in Electronics;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3