Analysis of Volatile Compounds in Processed Cream Cheese Models for the Prediction of “Fresh Cream” Aroma Perception

Author:

Caille Coline12ORCID,Boukraâ Mariem1ORCID,Rannou Cécile1ORCID,Villière Angélique1ORCID,Catanéo Clément1ORCID,Lethuaut Laurent1ORCID,Lagadec-Marquez Araceli2,Bechaux Julia2ORCID,Prost Carole1ORCID

Affiliation:

1. Oniris—UMR CNRS 6144 GEPEA—MA(PS)2/USC INRAE 1498 TRANSFORM, 44322 Nantes, France

2. Bel Group—Bio-Engineering Team, 41100 Vendôme, France

Abstract

Controlling flavor perception by analyzing volatile and taste compounds is a key challenge for food industries, as flavor is the result of a complex mix of components. Machine-learning methodologies are already used to predict odor perception, but they are used to a lesser extent to predict aroma perception. The objectives of this work were, for the processed cream cheese models studied, to (1) analyze the impact of the composition and process on the sensory perception and VOC release and (2) predict “fresh cream” aroma perception from the VOC characteristics. Sixteen processed cream cheese models were produced according to a three-factor experimental design: the texturing agent type (κ-carrageenan, agar-agar) and level and the heating time. A R-A-T-A test on 59 consumers was carried out to describe the sensory perception of the cheese models. VOC release from the cheese model boli during swallowing was investigated with an in vitro masticator (Oniris device patent), followed by HS-SPME-GC-(ToF)MS analysis. Regression trees and random forests were used to predict “fresh cream” aroma perception, i.e., one of the main drivers of liking of processed cheeses, from the VOC release during swallowing. Agar-agar cheese models were perceived as having a “milk” odor and favored the release of a greater number of VOCs; κ-carrageenan samples were perceived as having a “granular” and “brittle” texture and a “salty” and “sour” taste and displayed a VOC retention capacity. Heating induced firmer cheese models and promoted Maillard VOCs responsible for “cooked” and “chemical” aroma perceptions. Octa-3,5-dien-2-one and octane-2,3-dione were the two main VOCs that contributed positively to the “fresh cream” aroma perception. Thus, regression trees and random forests are powerful statistical tools to provide a first insight into predicting the aroma of cheese models based on VOC characteristics.

Funder

National Association for Research and Technology

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3