Barium Lanthanum Oxide Nanosheets in Photocatalytic and Forensic Applications: One-Pot Synthesis and Characterization

Author:

Majani Sanjay S.1,Meghana 1,S H Sowmyashree1,J Sowjanyashree1,Umesh Sahaja1,Shivamallu Chandan2ORCID,Iqbal Muzaffar3ORCID,Amachawadi Raghavendra G.4ORCID,K N Venkatachalaiah5,Kollur Shiva Prasad1ORCID

Affiliation:

1. School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru 570 022, Karnataka, India

2. Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570 015, Karnataka, India

3. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

4. Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5606, USA

5. Department of Physics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru Campus, Bengaluru 560 035, Karnataka, India

Abstract

The present work elucidates the fabrication of Barium Lanthanum Oxide nanosheets (BaLa2O4 NSs) via a simple one-pot precipitation method. The acquired results show an orthorhombic crystal system with an average crystallite size of 27 nm. The morphological studies revealed irregular-shaped sheets stacked together in a layered structure, with the confirmation of the precursor elements. The diffused reflectance studies revealed a strong absorption between 200 nm and 350 nm, from which the band-gap energy was evaluated to be 4.03 eV. Furthermore, the fluorescence spectrum was recorded for the prepared samples; the excitation spectrum shows a strong peak at 397 nm, attributed to the 4F7/2→4G11/2 transition, while the emission shows two prominent peaks at 420 nm (4G7/2→4F7/2) and 440 nm (4G5/2→4F7/2). The acquired emission results were utilized to confirm the color emission using a chromaticity plot, which found the coordinates to be at (0.1529 0.1040), and the calculated temperature was 3171 K. The as-prepared nanosheets were utilized in detecting latent fingerprints (LFPs) on various non-porous surfaces. The powder-dusting method was used to develop latent fingerprints on various non-porous surfaces, which resulted in detecting all the three ridge patterns. Furthermore, the as-synthesized nanosheets were used to degrade methyl red (MR) dye, the results of which show more than 60% degradation at the 70th minute. It was also found that there was no further degradation after 70 min. All the acquired results suggest the clear potential of the prepared BaLa2O4 NSs for use in advanced forensic and photocatalytic applications.

Funder

King Saud University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3