Abstract
A hypoxia-responsive probe based on a flavylium dye containing an azo group (AZO-Flav) was synthesized to detect hypoxic conditions via a reductase-catalyzed reaction in cancer cells. In in vitro enzymatic investigation, the azo group of AZO-Flav was reduced by a reductase in the presence of reduced nicotinamide adenine dinucleotide phosphate (NADPH) followed by fragmentation to generate a fluorescent molecule, Flav-NH2. The response of AZO-Flav to the reductase was as fast as 2 min with a limit of detection (LOD) of 0.4 μM. Moreover, AZO-Flav displayed high enzyme specificity even in the presence of high concentrations of biological interferences, such as reducing agents and biothiols. Therefore, AZO-Flav was tested to detect hypoxic and normoxic environments in cancer cells (HepG2). Compared to the normal condition, the fluorescence intensity in hypoxic conditions increased about 10-fold after 15 min. Prolonged incubation showed a 26-fold higher fluorescent intensity after 60 min. In addition, the fluorescence signal under hypoxia can be suppressed by an electron transport process inhibitor, diphenyliodonium chloride (DPIC), suggesting that reductases take part in the azo group reduction of AZO-Flav in a hypoxic environment. Therefore, this probe showed great potential application toward in vivo hypoxia detection.
Funder
Ministry of Higher Education, Science, Research and Innovation, Thailand
Suranaree University of Technology
Thailand Research Fund
National Research Council of Thailand
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献