Synergistic Multisystem Photocatalytic Degradation of Anionic and Cationic Dyes Using Graphitic Phase Carbon Nitride

Author:

Yang Wen1,Ding Kun1,Chen Guangzhou12,Wang Hua12,Deng Xinyue12

Affiliation:

1. College of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China

2. Anhui Key Laboratory of Environmental Pollution Control and Waste Resource Utilization, Anhui Jianzhu University, Hefei 230601, China

Abstract

Graphitic phase carbon nitride (g-C3N4) is a promising photocatalytic environmental material. For this study, the graphitic phase carbon nitride was prepared using a thermal polymerization method. The characteristic peaks, structures, and morphologies were determined using Fourier-transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), and scanning electron microscopy (SEM), respectively. Under the synergetic visible light catalysis of H2O2 and Na2S2O8, the degradation effects of g-C3N4 on the anionic dye methyl orange (MO) and the cationic dye rhodamine b (Rhb) were investigated. The effects of adding different volumes of H2O2 and Na2S2O8 were likewise tested. The results showed that the above two synergistic systems increased the degradation rates of MO and Rhb by 2.5 and 3.5 times, respectively, compared with pure g-C3N4, and that the degradation rates of both MO and Rhb reached 100% within 120 min and 90 min, respectively, in accordance with the primary reaction kinetics. When H2O2 and Na2S2O8 were added dropwise at 10 mL each, the degradation rates of MO and Rhb were 82.22% and 99.81%, respectively, after 30 min of open light. The results of experiments upon both zeta potential and radical quenching showed that ·OH and ·O2− were the main active radicals for dye degradation in our synergistic system. In addition, stability tests showed that the photocatalysts in the synergistic system still had good reusability. Therefore, the use of a synergistic system can effectively reduce the photogenerated electron-hole pair complexation rate, representing a significant improvement in both photocatalytic degradation and for stability levels.

Funder

Key Project of Provincial Natural Science Research in Anhui Universities

Horizontal Project of University-Enterprise Cooperation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3