Porous Carbon with Alumina Coating Nanolayer Derived from Biomass and the Enhanced Electrochemical Performance as Stable Anode Materials

Author:

Rehman Wasif ur1ORCID,Huang Haiming1ORCID,Yousaf Muhammad Zain2ORCID,Aslam Farooq2,Wang Xueliang3ORCID,Ghani Awais4

Affiliation:

1. School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China

2. School of Electrical and Information Engineering, Hubei University of Automotive Technology, Shiyan 442002, China

3. MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

4. Key Laboratory of Advanced Functional Materials and Mesoscopic Physics of Shaanxi Province, School of Physics, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

With the ever-increasing world population, the energy produced from green, environmentally friendly approaches is in high demand. In this work, we proposed a green and cost-effective strategy for synthesizing a porous carbon electrode decorated with alumina oxide (Al2O3) from cherry blossom leaves using the pyrolysis method followed by a sol-gel method. An Al2O3-coating nano-layer (4–6 nm) is formed on the porous carbon during the composition fabrication, which further adversely affects battery performance. The development of a simple rich-shell-structured C@Al2O3 nanocomposite anode is expected to achieve stable electrochemical performances as lithium storage. A significant contributing factor to enhanced performance is the structure of the rich-shell material, which greatly enhances conductivity and stabilizes the solid–electrolyte interface (SEI) film. In the battery test assembled with composite C@Al2O3 electrode, the specific capacity is 516.1 mAh g−1 at a current density of 0.1 A g−1 after 200 cycles. The average discharge capacity of carbon is 290 mAh g−1 at a current density of 1.0 A g−1. The present study proposes bioinspired porous carbon electrode materials for improving the performance of next-generation lithium-ion batteries.

Funder

the Program for Science and Technology Innovation Team in Colleges of Hubei Province

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3