Author:
Yuan Jiaqi,Wang Han,Wang Yunting,Wang Zijian,Huo Qing,Dai Xueling,Zhang Jiayu,Sun Yaxuan
Abstract
Alzheimer’s disease (AD) is a degenerative disease of the central nervous system characterized by the progressive impairment of neural activity. Studies have shown that 3,6′-disinapoyl sucrose (DISS) can alleviate the pathological symptoms of AD through the activation of the cAMP/CREB/BDNF signaling pathway. However, the exact biochemical mechanisms of action of DISS are not clear. This study explores metabolism of DISS in an AD mouse model, induced by the microinjection of a lentiviral expression plasmid of the APPswe695 gene into CA1 of the hippocampus. After gavage administration of DISS (200 mg/kg), the kidneys, livers, brains, plasma, urine, and feces were collected for UHPLC–Orbitrap mass spectrometry analysis. Twenty metabolites, including the prototype drug of DISS, were positively or tentatively identified based on accurate mass measurements, characteristic fragmentation behaviors, and retention times. Thus, the metabolic pathways of DISS in AD mice were preliminarily elucidated through the identification of metabolites, such as ester bond cleavage, demethoxylation, demethylation, and sinapic acid-related products. Furthermore, differences in the in vivo distribution of several metabolites were observed between the model and sham control groups. These findings can provide a valuable reference for the pharmacological mechanisms and biosafety of DISS.
Funder
Foundation of China; National Natural Sciencethe Graduate Student Scientific Research Innovation Support Project of Beijing Union University; Academic Research Projects of Beijing Union University
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献