Abstract
Amariin is an ellagitannin with two dehydrohexahydroxydiphenoyl (DHHDP) moieties connecting glucose 2,4- and 3,6-hydroxy groups. This tannin is predominant in the young leaves of Triadica sebifera and Carpinus japonica. However, as the leaves grow, the 3,6-DHHDP is converted to its reduced form, the hexahydroxydiphenoyl (HHDP) group, to generate geraniin, a predominant ellagitannin of the matured leaves. The purified amariin is unstable in aqueous solution, and the 3,6-(R)-DHHDP is spontaneously degraded to give HHDP, whereas 2,4-(R)-DHHDP is stable. The driving force of the selective reduction of the 3,6-DHHDP of amariin is shown to be the conformational change of glucose from O,3B to 1C4. Heating geraniin with pyridine affords 2,4-(R)-DHHDP reduction products. Furthermore, the acid hydrolysis of geraniin yields two equivalents of ellagic acid. Although the reaction mechanism is still ambiguous, these results propose an alternative biosynthetic route of the ellagitannin HHDP groups.
Funder
Japan Society for the Promotion of Science
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献