Synthesis and Biological Evaluation of Novel Aminochalcones as Potential Anticancer and Antimicrobial Agents

Author:

Kozłowska JoannaORCID,Potaniec BartłomiejORCID,Baczyńska Dagmara,Żarowska Barbara,Anioł Mirosław

Abstract

A series of 18 aminochalcone derivatives were obtained in yields of 21.5–88.6% by applying the classical Claisen-Schmidt reaction. Compounds 4–9, 14 and 16–18 with 4-ethyl, 4-carboxy-, 4-benzyloxy- and 4-benzyloxy-3-methoxy groups were novel, not previously described in the scientific literature. To determine the biological properties of the synthesized compounds, anticancer and antimicrobial activity assays were performed. Antiproliferative potential was evaluated on four different human colon cancer cell lines—HT-29, LS180, LoVo and LoVo/DX —using the SRB assay and compared with green monkey kidney fibroblasts COS7. Anticancer activity was described as the IC50 value. The best results were observed for 2′-aminochalcone (1), 3′-aminochalcone (2) and 4′-aminochalcone (3) (IC50 = 1.43–1.98 µg·mL−1) against the HT-29 cell line and for amino-nitrochalcones 10–12 (IC50 = 2.77–3.42 µg·mL−1) against the LoVo and LoVo/DX cell lines. Moreover, the antimicrobial activity of all derivatives was evaluated on two strains of bacteria: Escherichia coli ATCC10536 and Staphylococcus aureus DSM799, the yeast strain Candida albicans DSM1386 and three strains of fungi: Alternaria alternata CBS1526, Fusarium linii KB-F1 and Aspergillus niger DSM1957. In the case of E. coli ATCC10536 almost all derivatives hindered the bacterial growth (∆OD = 0). Furthermore, the best results were observed in the presence of 4′-aminochalcone (3), that completely limited the growth of all tested strains at the concentration range of 0.25–0.5 mg·mL−1. The strongest bacteriostatic activity was exhibited by novel 3′-amino-4-benzyloxychalcone (14), that prevented the growth of E. coli ATCC10536 with MIC = 0.0625 mg·mL−1.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3