Abstract
Biomolecules participate in various physiological and pathological processes through intermolecular interactions generally driven by non-covalent forces. In the present review, the force-induced remnant magnetization spectroscopy (FIRMS) is described and illustrated as a novel method to measure non-covalent forces. During the FIRMS measurement, the molecular magnetic probes are magnetized to produce an overall magnetization signal. The dissociation under the interference of external force yields a decrease in the magnetic signal, which is recorded and collected by atomic magnetometer in a spectrum to study the biological interactions. Furthermore, the recent FIRMS development with various external mechanical forces and magnetic probes is summarized.
Funder
National Natural Science Foundation of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science