Affiliation:
1. School of Physics and Electrical Engineering, Anyang Normal University, Anyang 455000, China
2. School of Physics and Electronic Engineering, Linyi University, Linyi 276000, China
Abstract
B-site cobalt (Co)-doped rare-earth orthoferrites ReFeO3 have shown considerable enhancement in physical properties compared to their parent counterparts, and Co-doped LuFeO3 has rarely been reported. In this work, LuFe1−xCoxO3 (x = 0, 0.05, 0.1, 0.15) powders have been successfully prepared by a mechanochemical activation-assisted solid-state reaction (MAS) method at 1100 °C for 2 h. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy studies demonstrated that a shrinkage in lattice parameters emerges when B-site Fe ions are substituted by Co ions. The morphology and elemental distribution were investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The UV–visible absorbance spectra show that LuFe0.85Co0.15O3 powders have a narrower bandgap (1.75 eV) and higher absorbance than those of LuFeO3 (2.06 eV), obviously improving the light utilization efficiency. Additionally, LuFe0.85Co0.15O3 powders represent a higher photocatalytic capacity than LuFeO3 powders and can almost completely degrade MO in 5.5 h with the assistance of oxalic acid under visible irradiation. We believe that the present study will promote the application of orthorhombic LuFeO3 in photocatalysis.
Funder
National Natural Science Foundation of China
Henan College Key Research Project
Scientific and Technological Project of Anyang City
College Students Innovation Fund of Anyang Normal University
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献