Water-Induced Regeneration of a 2,2-Diphenyl-1-picrylhydrazyl Radical after Its Scandium Ion-Promoted Electron-Transfer Disproportionation in an Aprotic Medium

Author:

Nakanishi Ikuo1ORCID,Shoji Yoshimi1,Ohkubo Kei12ORCID,Ito Hiromu1,Fukuzumi Shunichi34

Affiliation:

1. Quantum RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Inage-ku, Chiba 263-8555, Japan

2. Institute for Advanced Co-Creation Studies, Open and Transdisciplinary Research Initiatives, Osaka University, Suita 565-0871, Japan

3. Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea

4. Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan

Abstract

A neutral, stable radical, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•), has been frequently used to estimate the activity of antioxidants for more than 60 years. However, the number of reports about the effect of metal ions on the reactivity of DPPH• is quite limited. We have recently reported a unique electron-transfer disproportionation of DPPH• to produce the DPPH cations (DPPH+) and anions (DPPH−) upon the addition of scandium triflate [Sc(OTf)3 (OTf = OSO2CF3)] to an acetonitrile (MeCN) solution of DPPH•. The driving force of this reaction is suggested to be an interaction between DPPH– and Sc3+. In this study, it is demonstrated that the addition of H2O to the DPPH•–Sc(OTf)3 system in MeCN resulted in an increase in the absorption band at 519 nm due to DPPH•. This indicated that an electron-transfer comproportionation occurred to regenerate DPPH•. The regeneration of DPPH• was also confirmed by electron paramagnetic resonance (EPR) spectroscopy. The amount of DPPH• increased with an increasing amount of added H2O to reach a constant value. The detailed mechanism of regeneration of DPPH• was proposed based on the detailed spectroscopic and kinetic analyses, in which the reaction of DPPH+ with [(DPPH)2Sc(H2O)3]+ generated upon the addition of H2O to [(DPPH)2Sc]+ is the rate-determining step.

Funder

Ministry of Education, Culture, Sports, Science and Technology, Japan

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3