Biphasic Fermentation of Trapa bispinosa Shells by Ganoderma sinense and Characterization of Its Polysaccharides and Alcoholic Extract and Analysis of Their Bioactivity

Author:

Sun Xiaoyan1,Lei Qiuqi2,Chen Qinyi1,Song Dandan1,Zhou Min2,Wang Hongxun1,Wang Limei1

Affiliation:

1. College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China

2. College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China

Abstract

Background: Trapa bispinosa shells (TBs) and its flesh (TBf) have been recognized for their medicinal properties, including antioxidant, antitumor, and immunomodulatory effects. Despite these benefits, TBs are often discarded as waste material, and their applications remain to be further explored. Methods: In this study, we optimized the solid-state fermentation process of Ganoderma sinense (GS) with TBs using a response surface experiment methodology to obtain the fermented production with the highest water extract rate and DPPH free radical scavenging activity. We prepared and characterized pre-fermentation purified polysaccharides (P1) and post-fermentation purified polysaccharides (P2). Alcoholic extracts before (AE1) and after (AE2) fermentation were analyzed for active components such as polyphenols and flavonoids using UPLC-QTOF-MS/MS (ultra-performance liquid chromatography–quadrupole time-of-flight tandem mass spectrometry). Mouse macrophages (RAW 264.7) were employed to compare the immune-stimulating ability of polysaccharides and the antioxidant activity of AE1 and AE2. Results: Optimal fermentation conditions comprised a duration of 2 days, a temperature of 14 °C, and a humidity of 77%. The peak water extract yield and DPPH free radical scavenging rate of the water extract from TBs fermented by GS were observed under these conditions. The enhanced activity may be attributed to changes in the polysaccharide structure and the components of the alcoholic extract. The P2 treatment group indicated more secretion of RAW 264.7 cells of NO, iNOS, IL-2, IL-10, and TNF-α than P1, which shows that the polysaccharides demonstrated increased immune-stimulating ability, with their effect linked to the NF-кB pathway. Moreover, the results of the AE2 treatment group indicated that secretion of RAW 264.7 cells of T-AOC and T-SOD increased and MDA decreased, which shows that the alcoholic extract demonstrated enhanced antioxidant activity, with its effect linked to the Nrf2/Keap1-ARE pathway. Conclusions: Biphasic fermentation of Trapa bispinosa shells by Ganoderma sinense could change the composition and structure of the polysaccharides and the composition of the alcoholic extract, which could increase the products’ immunomodulatory and antioxidant activity.

Funder

Hubei Province Natural Science Foundation of China

Primary Research and Development Plan of Hubei Province

Publisher

MDPI AG

Reference44 articles.

1. Trapa bispinosa Roxb.: A review on nutritional and pharmacological aspects;Adkar;Adv. Pharmacol. Pharm. Sci.,2014

2. Iwaoka, Y., Suzuki, S., Kato, N., Hayakawa, C., Kawabe, S., Ganeko, N., Uemura, T., and Ito, H. (2021). Characterization and identification of bioactive polyphenols in the Trapa bispinosa Roxb. pericarp extract. Molecules, 26.

3. Wang, L., Yin, D., Fan, Y., Min, T., Yi, Y., and Wang, H. (2022). Molecular mechanism of the anti-gastric cancer activity of 1, 2, 3, 6-tetra-O-galloyl-β-D-glucose isolated from Trapa bispinosa Roxb. shell in vitro. PLoS ONE, 17.

4. The effects of water chestnut (Trapa bispinosa Roxb.) on the inhibition of glycometabolism and the improvement in postprandial blood glucose levels in humans;Takeshita;Glycative Stress Res.,2016

5. Phytochemical, antioxidant and cytotoxicity study of the methanolic extracts of leaves of Trapa bispinosa Roxb;Islam;Int. J. Pharm. Sci. Res.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3