Authentication and Provenance of Walnut Combining Fourier Transform Mid-Infrared Spectroscopy with Machine Learning Algorithms

Author:

Zhu Hongyan,Xu Jun-LiORCID

Abstract

Different varieties and geographical origins of walnut usually lead to different nutritional values, contributing to a big difference in the final price. The conventional analytical techniques have some unavoidable limitations, e.g., chemical analysis is usually time-expensive and labor-intensive. Therefore, this work aims to apply Fourier transform mid-infrared spectroscopy coupled with machine learning algorithms for the rapid and accurate classification of walnut species that originated from ten varieties produced from four provinces. Three types of models were developed by using five machine learning classifiers to (1) differentiate four geographical origins; (2) identify varieties produced from the same origin; and (3) classify all 10 varieties from four origins. Prior to modeling, the wavelet transform algorithm was used to smooth and denoise the spectrum. The results showed that the identification of varieties under the same origin performed the best (i.e., accuracy = 100% for some origins), followed by the classification of four different origins (i.e., accuracy = 96.97%), while the discrimination of all 10 varieties is the least desirable (i.e., accuracy = 87.88%). Our results implicated that using the full spectral range of 700–4350 cm−1 is inferior to using the subsets of the optimal spectral variables for some classifiers. Additionally, it is demonstrated that back propagation neural network (BPNN) delivered the best model performance, while random forests (RF) produced the worst outcome. Hence, this work showed that the authentication and provenance of walnut can be realized effectively based on Fourier transform mid-infrared spectroscopy combined with machine learning algorithms.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3