Searching for Low Molecular Weight Seleno-Compounds in Sprouts by Mass Spectrometry

Author:

Kurek Eliza,Michalska-Kacymirow Magdalena,Konopka Anna,Kościuczuk Olga,Tomiak Anna,Bulska Ewa

Abstract

A fit for purpose analytical protocol was designed towards searching for low molecular weight seleno-compounds in sprouts. Complementary analytical techniques were used to collect information enabling the characterization of selenium speciation. Conceiving the overall characterization of the behavior of selenium, inductively plasma optical mass spectrometry (ICP-MS) was used to determine the total selenium content in entire sprouts as well as in selected extracts or chromatographic fractions. Then, high-performance liquid chromatography combined with ICP-MS (HPLC-ICP-MS) was used to evaluate the presence of inorganic and organic seleno-compounds, with the advantages of being very sensitive towards selenium, but limited by available selenium standard compounds. Finally, ultra-high performance liquid chromatography electrospray ionization triple quadrupole mass spectrometry (UHPLC-ESI-QqQ-MS/MS) and UHPLC-ESI-Orbitrap-MS/MS were used for the confirmation of the identity of selected compounds and identification of several unknown compounds of selenium in vegetable sprouts (sunflower, onion, radish), respectively. Cultivation of plants was designed to supplement sprouts with selenium by using solutions of selenium (IV) at the concentration of 10, 20, 40, and 60 mg/L. The applied methodology allowed to justify that vegetable sprouts metabolize inorganic selenium to a number of organic derivatives, such as seleno-methylselenocysteine (SeMetSeCys), selenomethionine (SeMet), 5′-seleno-adenosine, 2,3-DHP-selenolanthionine, Se-S conjugate of cysteine-selenoglutathione, 2,3-DHP-selenocysteine-cysteine, 2,3-DHP-selenocysteine-cysteinealanine, glutathione-2,3-DHP-selenocysteine, gamma-Glu-MetSeCys or glutamyl-glycinyl-N-2,3-DHP-selenocysteine.

Funder

Narodowe Centrum Nauki

European Regional Development Fund

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3