Promising M2CO2/MoX2 (M = Hf, Zr; X = S, Se, Te) Heterostructures for Multifunctional Solar Energy Applications

Author:

Wen Jiansen1,Cai Qi1,Xiong Rui1,Cui Zhou1,Zhang Yinggan2ORCID,He Zhihan1,Liu Junchao1,Lin Maohua3ORCID,Wen Cuilian1,Wu Bo1ORCID,Sa Baisheng1ORCID

Affiliation:

1. Multiscale Computational Materials Facility, and Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350100, China

2. College of Materials, Xiamen University, Xiamen 361005, China

3. Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA

Abstract

Two-dimensional van der Waals (vdW) heterostructures are potential candidates for clean energy conversion materials to address the global energy crisis and environmental issues. In this work, we have comprehensively studied the geometrical, electronic, and optical properties of M2CO2/MoX2 (M = Hf, Zr; X = S, Se, Te) vdW heterostructures, as well as their applications in the fields of photocatalytic and photovoltaic using density functional theory calculations. The lattice dynamic and thermal stabilities of designed M2CO2/MoX2 heterostructures are confirmed. Interestingly, all the M2CO2/MoX2 heterostructures exhibit intrinsic type-II band structure features, which effectively inhibit the electron-hole pair recombination and enhance the photocatalytic performance. Furthermore, the internal built-in electric field and high anisotropic carrier mobility can separate the photo-generated carriers efficiently. It is noted that M2CO2/MoX2 heterostructures exhibit suitable band gaps in comparison to the M2CO2 and MoX2 monolayers, which enhance the optical-harvesting abilities in the visible and ultraviolet light zones. Zr2CO2/MoSe2 and Hf2CO2/MoSe2 heterostructures possess suitable band edge positions to provide the competent driving force for water splitting as photocatalysts. In addition, Hf2CO2/MoS2 and Zr2CO2/MoS2 heterostructures deliver a power conversion efficiency of 19.75% and 17.13% for solar cell applications, respectively. These results pave the way for exploring efficient MXenes/TMDCs vdW heterostructures as photocatalytic and photovoltaic materials.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

“Qishan Scholar” Scientific Research Startup Project of Fuzhou University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3