Highly Efficient Micro-Scale Liquid-Liquid In-Flow Extraction of 99mTc from Molybdenum

Author:

Martini PetraORCID,Uccelli LiciaORCID,Duatti AdrianoORCID,Marvelli Lorenza,Esposito JuanORCID,Boschi Alessandra

Abstract

The trend to achieve even more compact-sized systems is leading to the development of micro-scale reactors (lab-on-chip) in the field of radiochemical separation and radiopharmaceutical production. Technetium-99m extraction from both high and low specific activity molybdenum could be simply performed by MEK-driven solvent extraction if it were not for unpractical automation. The aim of this work is to develop a solvent extraction and separation process of technetium from molybdenum in a micro-scale in-flow chemistry regime with the aid of a capillary loop and a membrane-based separator, respectively. The developed system is able to extract and separate quantitatively and selectively (91.0 ± 1.8% decay corrected) the [99mTc]TcO4Na in about 20 min, by using a ZAIPUT separator device. In conclusion, we demonstrated for the first time in our knowledge the high efficiency of a MEK-based solvent extraction process of 99mTc from a molybdenum-based liquid phased in an in-flow micro-scale regime.

Funder

National Institute for Nuclear Physics

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3