How Does Ginsenoside Rh2 Mitigate Adipogenesis in Cultured Cells and Obese Mice?

Author:

Zhang Longyun,Virgous Carlos,Si Hongwei

Abstract

Ginsenoside Rh2, an intermediate metabolite of ginseng, but not naturally occurring, has recently drawn attention because of its anticancer effect. However, it is not clear if and how Rh2 inhibits preadipocytes differentiation. In the present study, we hypothesized that ginsenoside Rh2 attenuates adipogenesis through regulating the peroxisome proliferator-activated receptor gamma (PPAR-γ) pathway both in cells and obese mice. Different concentrations of Rh2 were applied both in 3T3-L1 cells and human primary preadipocytes to determine if Rh2 inhibits cell differentiation. Dietary Rh2 was administered to obese mice to determine if Rh2 prevents obesity in vivo. The mRNA and protein expression of PPAR-γ pathway molecules in cells and tissues were measured by real-time polymerase chain reaction (RT-PCR) and Western blot, respectively. Our results show that Rh2 dose-dependently (30–60 μM) inhibited cell differentiation in 3T3-L1 cells (44.5% ± 7.8% of control at 60 μM). This inhibitory effect is accompanied by the attenuation of the protein and/or mRNA expression of adipogenic markers including PPAR-γ and CCAAT/enhancer binding protein alpha, fatty acid synthase, fatty acid binding protein 4, and perilipin significantly (p < 0.05). Moreover, Rh2 significantly (p < 0.05) inhibited differentiation in human primary preadipocytes at much lower concentrations (5–15 μM). Furthermore, dietary intake of Rh2 (0.1 g Rh2/kg diet, w/w for eight weeks) significantly (p < 0.05) reduced protein PPAR-γ expression in liver and hepatic glutathione reductase and lowered fasting blood glucose. These results suggest that ginsenoside Rh2 dose-dependently inhibits adipogenesis through down-regulating the PPAR-γ pathway, and Rh2 may be a potential agent in preventing obesity in vivo.

Funder

National Institute of Food and Agriculture

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3