Evaluation of the Novel Synthetic Tyrosinase Inhibitor (Z)-3-(3-bromo-4-hydroxybenzylidene)thiochroman-4-one (MHY1498) In Vitro and In Silico

Author:

Bang EunJin,Noh Sang-Gyun,Ha Sugyeong,Jung Hee,Kim Dae,Lee A,Hyun Min,Kang Dongwan,Lee Sanggwon,Park Chaeun,Moon Hyung,Chung Hae

Abstract

Tyrosinase is a key enzyme in melanin synthesis, catalyzing the initial rate-limiting steps of melanin synthesis. Abnormal and excessive melanin synthesis is the primary cause of serious skin disorders including melasma, senile lentigo, freckles, and age spots. In attempts to find potent and safe tyrosinase inhibitors, we designed and synthesized a novel compound, (Z)-3-(3-bromo-4-hydroxybenzylidene)thiochroman-4-one (MHY1498), and evaluated its tyrosinase inhibitory activity in vitro and in silico. The chemical structures of (Z)-3-benzylidenethiochroman-4-one analogues, including the novel compound MHY1498, were rationally designed and synthesized as hybrid structures of reported potent tyrosinase inhibitors, which were confirmed both in vitro and in vivo: (Z)-5-(substituted benzylidene)thiazolidine-2,4-diones (Compound A) and 2-(substituted phenyl)benzo[d]thiazoles (Compound B). During screening, MHY1498 showed a strong dose-dependent inhibitory effect on mushroom tyrosinase. The IC50 value of MHY1498 (4.1 ± 0.6 μM) was significantly lower than that of the positive control, kojic acid (22.0 ± 4.7 μM). In silico molecular multi-docking simulation and inhibition mechanism studies indicated that MHY1498 interacts competitively with the tyrosinase enzyme, with greater affinity for the active site of tyrosinase than the positive control. Furthermore, in B16F10 melanoma cells treated with α-melanocyte-stimulating hormone, MHY1498 suppressed both melanin production and tyrosinase activity. In conclusion, our data demonstrate that MHY1498, a synthesized novel compound, effectively inhibits tyrosinase activity and has potential for treating hyperpigmentation and related disorders.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3