Affiliation:
1. School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. Oil and Gas Technology Research Institute, Petrochina Changqing Oilfield Company, Xi’an 710018, China
3. School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Abstract
Commonly used peroxydisulfate (PS) or peroxymonosulfate (PMS) activation methods have been limited in their practical application due to certain drawbacks, such as high cost, high energy consumption and secondary pollution. In this study, a catalyst-free alizarin green (AG) self-activating PMS catalytic system was constructed based on photosensitization properties of dye, which ultimately achieved efficient degradation of the dye activator, also the target pollutant. Here, 52.5% of the 100 mL mixture of 10 mg/L AG decomposed within 60 min with 1 mM PMS under visible-light irradiation, thereby showing a strong pH adaptation. Mechanism of AG self-activating PMS was revealed that the photo-excited AG can effectively transfer photo-induced electrons to PMS for its activation, which generates reactive oxidizing species dominated by singlet oxygen (1O2), and supplemented by hydroxyl radical (•OH), superoxide radical (O2•−) and sulfate radical (SO4•−) to realize the efficient self-degradation of the dye pollutants. Moreover, such self-catalytic system operated well under natural sunlight irradiation, indicating the great application potential in the actual wastewater treatment. Herein, photosensitive dye acted as an ideal PMS activator realizing its efficient self-degradation, which provides a novel idea of “using waste to treat waste” for developing wastewater treatment process in a high-efficiency and low-consumption way.
Funder
National Natural Science Foundation of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献