Changes in Porous Parameters of the Ion Exchanged X Zeolite and Their Effect on CO2 Adsorption

Author:

Gęsikiewicz-Puchalska Andżelika,Zgrzebnicki Michal,Michalkiewicz BeataORCID,Kałamaga AgnieszkaORCID,Narkiewicz UrszulaORCID,Morawski Antoni W.ORCID,Wrobel Rafal

Abstract

Zeolite 13X (NaX) was modified through ion-exchange with alkali and alkaline earth metal cations. The degree of ion exchange was thoroughly characterized with ICP, EDS and XRF methods. The new method of EDS data evaluation for zeolites was presented. It delivers the same reliable results as more complicated, expensive, time consuming and hazardous ICP approach. The highest adsorption capacities at 273 K and 0.95 bar were achieved for materials containing the alkali metals in the following order K < Na < Li, respectively, 4.54, 5.55 and 5.94 mmol/g. It was found that it is associated with the porous parameters of the ion-exchanged samples. The Li0.61Na0.39X form of zeolite exhibited the highest specific surface area of 624 m2/g and micropore volume of 0.35 cm3/g compared to sodium form 569 m2/g and 0.30 cm3/g, respectively. The increase of CO2 uptake is not related with deterioration of CO2 selectivity. At room temperature, the CO2 vs. N2 selectivity remains at a very high stable level prior and after ion exchange in co-adsorption process (XCO2 during adsorption 0.15; XCO2 during desorption 0.95) within measurement uncertainty. Additionally, the Li0.61Na0.39X sample was proven to be stable in the aging adsorption-desorption tests (200 sorption-desorption cycles; circa 11 days of continuous process) exhibiting the CO2 uptake decrease of about 6%. The exchange with alkaline earth metals (Mg, Ca) led to a significant decrease of SSA and micropore volume which correlated with lower CO2 adsorption capacities. Interestingly, the divalent cations cause formation of mesopores, due to the relaxation of lattice strains.

Funder

Polish-Norwegian Research Programme

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3