Thermoelectric Materials for Textile Applications

Author:

Chatterjee KonyORCID,Ghosh Tushar K.ORCID

Abstract

Since prehistoric times, textiles have served an important role–providing necessary protection and comfort. Recently, the rise of electronic textiles (e-textiles) as part of the larger efforts to develop smart textiles, has paved the way for enhancing textile functionalities including sensing, energy harvesting, and active heating and cooling. Recent attention has focused on the integration of thermoelectric (TE) functionalities into textiles—making fabrics capable of either converting body heating into electricity (Seebeck effect) or conversely using electricity to provide next-to-skin heating/cooling (Peltier effect). Various TE materials have been explored, classified broadly into (i) inorganic, (ii) organic, and (iii) hybrid organic-inorganic. TE figure-of-merit (ZT) is commonly used to correlate Seebeck coefficient, electrical and thermal conductivity. For textiles, it is important to think of appropriate materials not just in terms of ZT, but also whether they are flexible, conformable, and easily processable. Commercial TEs usually compromise rigid, sometimes toxic, inorganic materials such as bismuth and lead. For textiles, organic and hybrid TE materials are more appropriate. Carbon-based TE materials have been especially attractive since graphene and carbon nanotubes have excellent transport properties with easy modifications to create TE materials with high ZT and textile compatibility. This review focuses on flexible TE materials and their integration into textiles.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3