Abstract
A well-defined block copolymer brush poly(glycidyl methacrylate)-graft-(poly(methyl methacrylate)-block- poly(oligo(ethylene glycol) methyl ether methacrylate)) (PGMA-g-(PMMA-b-POEGMA)) is synthesized via grafting from an approach based on a combination of click chemistry and reversible addition-fragmentation chain transfer (RAFT) polymerization. The resulting block copolymer brushes were characterized by 1H-NMR and size exclusion chromatography (SEC). The self-assembly of the block copolymer brush was then investigated under selective solvent conditions in three systems: THF/water, THF/CH3OH, and DMSO/CHCl3. PGMA-g-(PMMA-b-POEGMA) was found to self-assemble into spherical micelle structures as analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The average size of the particles was much smaller in THF/CH3OH and DMSO/CHCl3 as compared with the THF/water system. Thin film of block copolymer brushes with tunable surface properties was then prepared by the spin-coating technique. The thickness of the thin film was confirmed by scanning electron microscopy (SEM). Atom force microscopy (AFM) analysis revealed a spherical morphology when the block copolymer brush was treated with poor solvents for the backbone and hydrophobic side chains. The contact angle measurements were used to confirm the surface rearrangements of the block copolymer brushes.
Funder
Agence Nationale de la Recherche
Ministry of Science and Technology
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献