Computational Prediction of Compound–Protein Interactions for Orphan Targets Using CGBVS

Author:

Kanai ChisatoORCID,Kawasaki EnzoORCID,Murakami Ryuta,Morita Yusuke,Yoshimori AtsushiORCID

Abstract

A variety of Artificial Intelligence (AI)-based (Machine Learning) techniques have been developed with regard to in silico prediction of Compound–Protein interactions (CPI)—one of which is a technique we refer to as chemical genomics-based virtual screening (CGBVS). Prediction calculations done via pairwise kernel-based support vector machine (SVM) is the main feature of CGBVS which gives high prediction accuracy, with simple implementation and easy handling. We studied whether the CGBVS technique can identify ligands for targets without ligand information (orphan targets) using data from G protein-coupled receptor (GPCR) families. As the validation method, we tested whether the ligand prediction was correct for a virtual orphan GPCR in which all ligand information for one selected target was omitted from the training data. We have specifically expressed the results of this study as applicability index and developed a method to determine whether CGBVS can be used to predict GPCR ligands. Validation results showed that the prediction accuracy of each GPCR differed greatly, but models using Multiple Sequence Alignment (MSA) as the protein descriptor performed well in terms of overall prediction accuracy. We also discovered that the effect of the type compound descriptors on the prediction accuracy was less significant than that of the type of protein descriptors used. Furthermore, we found that the accuracy of the ligand prediction depends on the amount of ligand information with regard to GPCRs related to the target. Additionally, the prediction accuracy tends to be high if a large amount of ligand information for related proteins is used in the training.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A general prediction model for compound-protein interactions based on deep learning;Frontiers in Pharmacology;2024-09-04

2. Illuminating the Chemical Space of Untargeted Proteins;Journal of Chemical Information and Modeling;2023-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3