Tamoxifen and the PI3K Inhibitor: LY294002 Synergistically Induce Apoptosis and Cell Cycle Arrest in Breast Cancer MCF-7 Cells

Author:

Abdallah Mohamed E.,El-Readi Mahmoud ZakiORCID,Althubiti Mohammad Ahmad,Almaimani Riyad AdnanORCID,Ismail Amar MohamedORCID,Idris Shakir,Refaat BassemORCID,Almalki Waleed Hassan,Babakr Abdullatif Taha,Mukhtar Mohammed H.,Abdalla Ashraf N.ORCID,Idris Omer Fadul

Abstract

Breast cancer is considered as one of the most aggressive types of cancer. Acquired therapeutic resistance is the major cause of chemotherapy failure in breast cancer patients. To overcome this resistance and to improve the efficacy of treatment, drug combination is employed as a promising approach for this purpose. The synergistic cytotoxic, apoptosis inducing, and cell cycle effects of the combination of LY294002 (LY), a phosphatidylinositide-3-kinase (PI3K) inhibitor, with the traditional cytotoxic anti-estrogen drug tamoxifen (TAM) in breast cancer cells (MCF-7) were investigated. LY and TAM exhibited potent cytotoxic effect on MCF-7 cells with IC50 values 0.87 µM and 1.02 µM. The combination of non-toxic concentration of LY and TAM showed highly significant synergistic interaction as observed from isobologram (IC50: 0.17 µM, combination index: 0.18, colony formation: 9.01%) compared to untreated control. The percentage of early/late apoptosis significantly increased after treatment of MCF-7 cells with LY and TAM combination: 40.3%/28.3% (p < 0.001), compared to LY single treatment (19.8%/11.4%) and TAM single treatment (32.4%/5.9%). In addition, LY and TAM combination induced the apoptotic genes Caspase-3, Caspase-7, and p53, as well as p21 as cell cycle promotor, and significantly downregulated the anti-apoptotic genes Bcl-2 and survivin. The cell cycle assay revealed that the combination induced apoptosis by increasing the pre-G1: 28.3% compared to 1.6% of control. pAKT and Cyclin D1 protein expressions were significantly more downregulated by the combination treatment compared to the single drug treatment. The results suggested that the synergistic cytotoxic effect of LY and TAM is achieved by the induction of apoptosis and cell cycle arrest through cyclin D1, pAKT, caspases, and Bcl-2 signaling pathways.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3