Machine Learning and Quantum Calculation for Predicting Yield in Cu-Catalyzed P–H Reactions

Author:

Ma Youfu1,Zhang Xianwei1,Zhu Lin1,Feng Xiaowei12,Kowah Jamal A. H.12ORCID,Jiang Jun1ORCID,Wang Lisheng1,Jiang Lihe2ORCID,Liu Xu12ORCID

Affiliation:

1. Medical College, Guangxi University, Nanning 530004, China

2. School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China

Abstract

The paper discussed the use of machine learning (ML) and quantum chemistry calculations to predict the transition state and yield of copper-catalyzed P–H insertion reactions. By analyzing a dataset of 120 experimental data points, the transition state was determined using density functional theory (DFT). ML algorithms were then applied to analyze 16 descriptors derived from the quantum chemical transition state to predict the product yield. Among the algorithms studied, the Support Vector Machine (SVM) achieved the highest prediction accuracy of 97%, with over 80% correlation in Leave-One-Out Cross-Validation (LOOCV). Sensitivity analysis was performed on each descriptor, and a comprehensive investigation of the reaction mechanism was conducted to better understand the transition state characteristics. Finally, the ML model was used to predict reaction plans for experimental design, demonstrating strong predictive performance in subsequent experimental validation.

Funder

National Natural Science Foundation of China

Guangxi Natural Science Foundation

Fund of High-level talents of Youjiang Medical College for Nationalities

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3