The Synthesis and Polymer-Reinforced Mechanical Properties of SiO2 Aerogels: A Review

Author:

Zhan Wang1ORCID,Chen Le2ORCID,Kong Qinghong1ORCID,Li Lixia1ORCID,Chen Mingyi1ORCID,Jiang Juncheng3ORCID,Li Weixi1,Shi Fan1,Xu Zhiyuan1

Affiliation:

1. School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China

2. Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China

3. College of Safety Science and Engineering, Nanjing Tech University, Nanjing 213000, China

Abstract

Silica aerogels are considered as the distinguished materials of the future due to their extremely low thermal conductivity, low density, and high surface area. They are widely used in construction engineering, aeronautical domains, environmental protection, heat storage, etc. However, their fragile mechanical properties are the bottleneck restricting the engineering application of silica aerogels. This review briefly introduces the synthesis of silica aerogels, including the processes of sol–gel chemistry, aging, and drying. The effects of different silicon sources on the mechanical properties of silica aerogels are summarized. Moreover, the reaction mechanism of the three stages is also described. Then, five types of polymers that are commonly used to enhance the mechanical properties of silica aerogels are listed, and the current research progress is introduced. Finally, the outlook and prospects of the silica aerogels are proposed, and this paper further summarizes the methods of different polymers to enhance silica aerogels.

Funder

National Natural Science Foundation of China

Students’ Scientific Research Training Program of the College of Emergency Management of Jiangsu University

The Education Reform Research and Talent Training Project of College of Emergency Management of Jiangsu University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3