Author:
Nunes S.,Saraiva S.,Pereira R.,Silva M.,Carlos L.,Almeida P.,Gonçalves M.,Ferreira R.,Bermudez V.
Abstract
In recent years, the synthesis of polymer electrolyte systems derived from biopolymers for the development of sustainable green electrochemical devices has attracted great attention. Here electrolytes based on the red seaweeds-derived polysaccharide κ-carrageenan (κ-Cg) doped with neodymium triflate (NdTrif3) and glycerol (Gly) were obtained by means of a simple, clean, fast, and low-cost procedure. The aim was to produce near-infrared (NIR)-emitting materials with improved thermal and mechanical properties, and enhanced ionic conductivity. Cg has a particular interest, due to the fact that it is a renewable, cost-effective natural polymer and has the ability of gelling in the presence of certain alkali- and alkaline-earth metal cations, being good candidates as host matrices for accommodating guest cations. The as-synthesised κ-Cg-based membranes are semi-crystalline, reveal essentially a homogeneous texture, and exhibit ionic conductivity values 1–2 orders of magnitude higher than those of the κ-Cg matrix. A maximum ionic conductivity was achieved for 50 wt.% Gly/κ-Cg and 20 wt.% NdTrif3/κ-Cg (1.03 × 10−4, 3.03 × 10−4, and 1.69 × 10−4 S cm−1 at 30, 60, and 97 °C, respectively). The NdTrif-based κ-Cg membranes are multi-wavelength emitters from the ultraviolet (UV)/visible to the NIR regions, due to the κ-Cg intrinsic emission and to Nd3+, 4F3/2→4I11/2-9/2.
Funder
Foundation for Science and Technology (FCT) and by FEDER funds through the POCI-COMPETE 2020
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献