Calculation of Mechanical Properties, Electronic Structure and Optical Properties of CsPbX3 (X = F, Cl, Br, I)

Author:

Liu Yang1ORCID,Fang Canxiang2,Lin Shihe1,Liu Gaihui1,Zhang Bohang1,Shi Huihui1,Dong Nan1,Yang Nengxun1,Zhang Fuchun1ORCID,Guo Xiang2,Liu Xinghui2ORCID

Affiliation:

1. School of Physics and Electronic Information, Yan’an University, Yan’an 716000, China

2. Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China

Abstract

We utilized a first-principle density functional theory for a comprehensive analysis of CsPbX3 (X = F, Cl, Br, I) to explore its physical and chemical properties, including its mechanical behavior, electronic structure and optical properties. Calculations show that all four materials have good stability, modulus of elasticity, hardness and wear resistance. Additionally, CsPbX3 demonstrates a vertical electron leap and serves as a semiconductor material with direct band gaps of 3.600 eV, 3.111 eV, 2.538 eV and 2.085 eV. In examining its optical properties, we observed that the real and imaginary components of the dielectric function exhibit peaks within the low-energy range. Furthermore, the dielectric function gradually decreases as the photon energy increases. The absorption spectrum reveals that the CsPbX3 material exhibits the highest UV light absorption, and as X changes (with the increase in atomic radius within the halogen group of elements), the light absorption undergoes a red shift, becoming stronger and enhancing light utilization. These properties underscore the material’s potential for application in microelectronic and optoelectronic device production. Moreover, they provide a theoretical reference for future investigations into CsPbX3 materials.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3